На правах рукописи

СТЕПАНОВА ЕКАТЕРИНА АЛЕКСЕЕВНА

СОРБЦИЯ СВИНЦА И КАДМИЯ БИОЛОГИЧЕСКИ АКТИВНЫМИ ДОБАВКАМИ К ПИЩЕ ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ В БИОПРОФИЛАКТИКЕ ЗАГРЯЗНЕНИЯ СРЕДЫ ОБИТАНИЯ ЧЕЛОВЕКА ТЯЖЕЛЫМИ МЕТАЛЛАМИ

03.00.16 - экология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

> Нижний Новгород 2006

Работа выполнена на кафедре экологии Нижегородского государственного университета им. Н.И. Лобачевского

Научный руководитель:

доктор химических наук, профессор

Урьяш Владимир Файвишевич

: итиэноппо эмимланинфО

доктор биологических наук, профессор

Постнов Иван Евстафиевич

доктор химических наук, профессор

Гордецов Александр Сергеевич

Ведущая организация

Центр «Биоинженерия» РАН, г. Москва

Защита состоится «В» Сессий 2006 г. в В часов на заседании диссертационного совета Д.212.166.12 в Нижегородском государственном университете им. Н.И. Лобачевского по адресу: 603950 г. Нижний Новгород, пр. Гагарина, 23, корп. 1, биологический факультет

e-mail: ecology@bio.unn.ru

fax: (8312)65-85-92

С диссертацией можно ознакомиться в библиотеке Нижегородского государственного университета им. Н.И. Лобачевского

Автореферат разослан « 2 » августве 2006 г.

Ученый секретарь диссертационного совета, кандидат биологических наук

Кра/ Г.А. Кравченко

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

В настоящее время загрязнение окружающей среды тяжелыми металлами признается одной из главных проблем экологии и здоровья населения России. Включение свинца и кадмия в число приоритетных загрязнителей объясняется их высокой токсичностью, способностью накапливаться в организме человека, а также повсеместным присутствием в окружающей среде (Ревич, 2001). Разнообразные проявления хронической свинцовой интоксикации изучены более детально, чем какого-либо другого профессионального отравления, в связи с выраженным токсическим действием свинца на систему крови, нервную и сердечно-сосудистую систему, желудочно-кишечный тракт (ЖКТ), печень, почки. Хотя кадмий имеет более ограниченную область токсического воздействия, он отнесен Всемирной организацией здравоохранения к числу наиболее опасных для здоровья человека веществ.

Неблагоприятное для здоровья воздействие неорганических соединений свинца и кадмия и стойкость загрязнения ими среды обитания привели к поиску лечебно-профилактических методов, которые способствовали бы уменьшению аккумуляции тяжелых металлов в организме и ослаблению вызываемых ими патологических изменений. Суть направления биопрофилактики заключается в воздействии не на вредные факторы окружающей среды, а на реактивность и резистентность организма по отношению к ним, т.е. на биологические предпосылки к развитию профессиональной или экологически обусловленной патологии (Кацнельсон и др., 2004). Метод энтеросорбции является неотъемлемой частью биопрофилактики. Энтеросорбенты из растительного сырья не только организма человека тяжелые металлы, но и оказывают профилактическое действие, поставляя в организм витамины, пищевые волокна и другие полезные вещества. Повышенный интерес вызывают растительные энтеросорбенты, их сорбционные свойства изучаются в последние годы (Щелкунов, 2004) с возрастающей интенсивностью. Особенно актуальным является поиск эффективных энтеросорбентов, способных снизить концентрацию тяжелых металлов в организме человека до допустимого уровня и оказывающих «мягкое» воздействие на организм. Целесообразно проведение исследований, направленных на определение максимальной сорбционной емкости БАД и пищевых волокон, влияния экспозиции, температуры, рН на эффективность процесса сорбции.

Цель исследований

Изучение закономерности сорбции катионов свинца (Pb^{2+}) и кадмия (Cd^{2+}) из водных растворов их солей (нитрата свинца и сульфата кадмия) криопорошками «Биофит» из растительного сырья (сельскохозяйственных культур) в опытах *in vitro* и *in vivo*.

Задачи исследований

- 1. Исследовать сорбцию Pb^{2+} и Cd^{2+} криопорошками «Биофит» в условиях *in vitro* и определить их сорбционную способность и сорбционную емкость.
- 2. Исследовать влияние степени дисперсности БАД на закономерности сорбции ими Pb^{2+} и Cd^{2+} изолированно и совместно.
- 3. Изучить взаимное влияние компонентов смесевых БАД на их способность сорбировать Pb^{2+} и Cd^{2+} изолированно и совместно.
- 4. Исследовать сорбцию Pb²⁺ и Cd²⁺ пищевыми волокнами, входящими в состав БАД.
- 5. Изучить биопрофилактическое действие сорбента (БАД «Овес») и его способность сорбировать и выводить свинец из организма экспериментальных животных (белых крыс).

Научная новизна

Для изучения способности БАД из растительного сырья и пищевых волокон, входящих в их состав, сорбировать Pb^{2+} и Cd^{2+} подобрана методика, воспроизводящая условия (рH, время и интенсивное перемешивание), приближающиеся к перевариванию пищи в ЖКТ человека. Впервые исследовано влияние степени дисперсности БАД на их сорбционную способность, взаимное влияние свинца и кадмия при их совместной сорбции мелкодисперсными БАД и некоторыми полисахаридами, а также взаимное влияние компонентов смесевых БАД на сорбционную способность. '

Научно-практическая значимость работы

Работа выполнялась в соответствии с единым заказ - нарядом Минобразования и науки РФ в 2000–2005 г.г., тема ЗМ.321, (ННГУ 1.32.01.) «Создание теоретических основ синтеза полимеров, изучение их строения и физико-химических характеристик; термодинамика полимеров, полисахаридов и элементоорганических соединений»; проектом «Разработка оборудования и технологии получения растворимых напитков и соков на основе криопорошков сверхтонкого измельчения» (шифр: «Фитонапитки») в рамках инновационной программы Миннауки РФ «Наука – технология – производство – рынок» (2000–2001), а также по хоздоговорам с ЗАО «Биофит», ЗАО «Фитоград», ЗАО «Биоцентр».

На ряде предприятий г. Нижнего Новгорода (ЗАО «Биофит», ЗАО «Фитоград» и ЗАО «Биоцентр») на основании полученных экспериментальных данных разработан состав и налажено производство ряда многокомпонентных БАД, способных не только поставлять в организм человека биологически активные вещества, но и эффективно выводить свинец и кадмий.

Материалы диссертации используются в лекционных курсах «Химия окружающей среды», «Физико-химические методы мониторинга окружающей

среды» на биологическом факультете, в курсовых и дипломных работах студентов Нижегородского государственного университета им. Н.И. Лобачевского.

Объем и структура диссертации

Материалы диссертации изложены на 130 стр. Работа состоит из введения, 4 глав, заключения, выводов и списка цитированной литературы. В работе приведено 16 рисунков, 36 таблиц. Список цитированной литературы включает в себя 140 источников, в том числе 40 - иностранных авторов.

Публикации и апробации результатов исследований

Основные положения диссертации опубликованы в 18 научных работах. Они докладывались на: III Международной научно-технической конференции «Пища. Экология. Чсловек» (Москва, 1999); I Международной НПК по трансферу технологий в свободных экономических зонах «Тенденции. Теории и практика (ТРАНСТЕХ - 2002)» (Гомель, 2002); I НПК «Проблемы регионального экологического мониторинга» (Нижний Новгород, 2002); III Международном симпозиуме «Контроль и реабилитация окружающей среды» (Томск, 2002); VIII и IX Нижегородских сессиях молодых ученых (Нижний Новгород, 2003, 2004). Материалы диссертации используются в лекционных курсах «Химия окружающей среды», «Физико-химические методы мониторинга окружающей среды» биологического факультета, в курсовых и дипломных работах студентов Нижегородского госуниверситета им. Н.И. Лобачевского.

Основные положения, выносимые на защиту

- 1. Изучение сорбции Pb²⁺ и Cd²⁺ в опытах *in vitro* позволяет определить наиболее эффективные энтеросорбенты, а также установить взаимосвязь между сорбционной емкостью и массой твердого остатка БАД.
- 2. Увеличение степени дисперсности БАД приводит к увеличению сорбционной способности Pb^{2+} и не влияет на сорбционную способность Cd^{2+} .
- 3. Сорбция Pb²⁺ и Cd²⁺ некоторыми смесевыми БАД характеризуется отсутствием как аддитивного, так и потенцирующего взаимодействия компонентов, входящих в их состав.
- 4. Сорбция Pb²⁺ и Cd²⁺ пищевыми волокнами, входящими в состав БАД, выявляет полисахариды, обеспечивающие эффективную сорбционную способность БАД.
- 5. Введение БАД «Овес» в рацион питания белых крыс, подвергшихся воздействию малых доз свинца, значимо снижает содержание свинца во внутренних средах организма.

Глава 1. Современная проблема загрязнения окружающей среды свинцом и кадмием и поиск средств биопрофилактики (энтеросорбентов) для уменьшения негативного воздействия тяжелых металлов на здоровье человека (Обзор литературы).

В ходе анализа литературных источников изучен вопрос о загрязнении среды обитания человека неорганическими соединениями свинца и кадмия, определена проблема хронического непромышленного воздействия малых доз свинца на взрослый и детский контингенты, проанализированы современные методы детоксикации организма и состояние вопроса о средствах биопрофилактики воздействия на организм человека тяжелых металлов.

СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ

Глава 2. Материалы и методы исследования

2.1. Объекты исследования. Объектами исследования служили крупнодисперсные криопорошки из топинамбура, черники, тыквы, петрушки, сельдерея, малины, свеклы, овса, яблока, моркови, аронии, укропа и др., мелкодисперсные криопорошки из яблока клюквы, мяты, топинамбура, аронии, свеклы и др., смесевые многокомпонентные БАД («Сонет», «Калейдоскоп», «Витасорб»), полученные в ЗАО «Биофит» (г. Н. Новгород) путем криогенного измельчения в шаровой мельнице предварительно высушенного в вакууме растительного сырья (Груздева и др., 1998; Кирсанова и др., 1997), полисахариды (древесная аморфная целлюлоза, яблочный_пектин, картофельный крахмал, инулин из корней цикория).

Все БАД были воздушно-сухие и содержали 3-8 мас.% остаточной воды. Определенное методом атомно-эмиссионного анализа (Спектральный..., 1994) содержание тяжелых металлов в пересчете на исходное сырье не превышает ПДК (Рb — 0.4 мг/кг, Cd — 0.03 мг/кг) во всех изученных образцах (Гигиенические.., 1991).

2.2. Определение размера частиц БАД. Определение размера частиц крупнодисперсных БАД проводилось с использованием сит с различными размерами ячеек. Диаметр отбираемых частиц составил 100-500 мкм. Для увеличения эффективности воздействия на организм были разработаны БАД с более высокой степенью дисперсности («Яблоко», «Свекла», «Арония», «Топинамбур» и др.). Размер частиц определяли оптическим методом, и у различных высокодисперсных образцов БАД он составил 5-40 мкм.

^{*} Патент № 2110194 «Способ получения пищевой добавки из растительного сырья» Патент № 2124300 «Пищевая добавка в таблетках»

Патент № 2129393 «Биологически активная пищевая добавка в дозированной форме»

"Регистрационное удостоверение №005290.Р.643.01.2003 «Биологически активная добавка к пище «Витасорб»; Сан.-эпидемиол. заключение 52.НЦ.06.916.Т.000820.04.02 от 23.04.2002 «Продукты «Биофит» - смеси криопорошков».

2.3. Выбор метода изучения сорбции свинца и кадмия в условиях in vitro

В настоящее время отсутствует единая методика изучения сорбции тяжелых металлов сорбентами из растительного сырья. Поэтому были проанализированы и сопоставлены возможности различных методов при определении сорбционной способности БАД в опытах *in vitro*. Содержание Pb^{2+} и Cd^{2+} в водных фильтратах после отделения твердых остатков БАД определяли потенциометрическим методом с применением ионселективных электродов. Содержание Pb^{2+} и Cd^{2+} в исходном растительном сырье и твердых остатках БАД, оставшихся после проведения разработанной нами методики количественной оценки сорбционной способности БАД определяли спектральными методами анализа.

Свинец и кадмий брали в виде их растворимых в воде солей – Pb(NO₃)₂ квалификации «осч», CdSO₄ квалификации «хч». Соли растворяли в 30 мл дистиллированной воды. Криопорошок (сорбент массой ~ 1.8 г) вводили в раствор при перемешивании на магнитной мешалке. Выбранная масса сорбента соответствует ежедневной профилактической дозе. Путем добавления 0.5 н раствора HCl доводили рН смеси до значения 3.5 и перемешивали образец 3 часа. Затем с помощью 10%-ного раствора аммиака изменяли рН до значения 8.5 и перемешивали образец еще 3 часа. Необходимое количество растворов соляной кислоты и аммиака определяли в предварительных опытах с помощью универсального иономера ЭВ-74.

Двухстадийная методика использовалась в экспериментах с кадмием. Для приготовления образцов со свинцом можно было использовать только первую кислотную стадию, т.к. $Pb(NO_3)_2$ гидролизуется в растворе. У образцов, которые после приготовления можно было отделить от фильтра («Укроп», «Морковь»), проводили и кислотную, и щелочную стадии. Результаты для одно- и двухстадийных методик совпадали в пределах погрешности эксперимента. Многочисленные эксперименты показали, что гидролиз и преимущественное изменение массы сорбента происходит на кислотной стадии. Для увеличения информации о закономерностях сорбции Pb^{2+} и Cd^{2+} и подтверждения результатов для некоторых образцов определяли содержание металлов, как в твердом остатке, так и в фильтрате. Твердый остаток отделяли от жидкости двумя способами:

- на воронке Бюхнера (с периодическим откачиванием) при перемешивании в течение нескольких часов. Частично обезвоженный образец промывали 20 мл дистиллированной воды в два приема;
- путем центрифугирования на приборе «Месhanica ргесуzујпа» (Польша). Скорость центрифугирования составляла 6000 об/мин. Фильтрат сливали. Осадок так же, как и в первом способе, промывали 20 мл дистиллированной воды в два приема, и жидкость присоединяли к первоначально слитому раствору. Твердый остаток переносили на бумажный фильтр.

Досушивали продукты на фильтрах при 70°C в течение 4 часов. Полученные образцы представляли собой пленки, довольно прочно удерживаемые фильтром.

Поэтому при анализе атомно-абсорбционным методом на содержание тяжелых металлов адсорбент погружали в раствор HNO_3 вместе с фильтром. В предварительных опытах было установлено, что использованные фильтры задерживали 2.0 мас.% Cd^{2+} и 4.5 мас.% Pb^{2+} .

Содержание Pb^{2+} и Cd^{2+} в твердых остатках определяли атомноабсорбционным методом спектрального анализа на спектрометре производства фирмы «Perkin-Elmer», модели 603. Массовую долю Pb^{2+} и Cd^{2+} , сорбированных БАД в отдельном опыте (ω_i , мас.%), рассчитывали по формуле:

$$\omega_{i_i} = \frac{m_i}{m_i} * 100\%,$$

где m_i — масса сорбированного Pb^{2+} или Cd^{2+} , r; m_j - масса Pb^{2+} или Cd^{2+} , введенных в раствор, r. Относительная погрешность определения ω_i составила 10%.

Рассчитывали также сорбционную емкость (СЕ) БАД по формуле:

$$CE = \frac{m_{Me}}{m_s},$$

где m_{Me} – масса сорбированного металла, мг; m_{S} - масса сорбента, г.

2.4. Потенциометрическое определение свинца с применением иоп селективных электродов (ИСЭ)

В данном разделе представлена методика разработки жидкостного электрода, селективного к ацетатным комплексам свинца, и описано исследование свойств электрода (влияние посторонних веществ и кислотности среды, определение коэффициентов селективности).

2.5. Методики спектрального анализа

В разделе описаны методы атомно-эмиссионного и атомно-абсорбционного спектрального анализа, использующиеся для определения содержания тяжелых металлов в исходном растительном сырье, твердых остатках, а также в органах и тканях экспериментальных животных (белых крыс).

2.6. Методика исследования физиологических показателей экспериментальных животных.

Исследования проведены на белых нелинейных крысах самцах массой 180–250 г, содержавшихся в обычных условиях вивария по 10 – 11 особей в клетке со свободным доступом к воде и пище. В качестве сорбента была выбрана БАД «Овес-Биофиг», показавшая в опытах *in vitro* высокую сорбционную способность (81±1 мас.% Pb²⁺). Эксперимент проводился на трех группах животных: группа I – контрольная (получала нормальный пищевой рацион); группа П – получала нитрат свинца и нормальный пищевой рацион; группа П – профилактическая (получала нитрат свинца и БАД «Овес»).

Исходя из параметров токсичности нитрата свинца, каждому животному из групп II и III ежедневно в 1 мл дистиллированной воды вводили внугрижелудочно 10 мг Pb(NO₃)₂, что составляет приблизительно 0.1 ЛД₅₀ (Вредные..., 1988). Профилактическая группа III предварительно получала около 5.14 мг БАД «Овес» в 1 мл дистиллированной воды, что соответствует ранее установленной эффективной профилактической дозе, а токсикант вводили через 20 минут после введения сорбента. Контрольная группа I получала 1 мл дистиллированной воды внутрижелудочно. Животных кормили через 2 часа после воздействия. Введение указанных веществ производили 5 дней в неделю в течение 17 дней.

На 2-ые, 8-ые, 14-ые и 17-ые сутки были проведены исследования гематологических показателей (Лабораторные..., 1987). Определяли содержание гемоглобина, количеств эритроцитов и лейкоцитов (унифицированные методики), цветовой показатель.

На 5-ые, 9-ые, 13-ые, 16-ые сутки были проведены исследования морфофизиологических (Методические..., 1980) и поведенческих (Лабораторные..., 1987) показателей. Из морфофизиологических характеристик определяли вес, температуру тела, частоту дыхания. Из поведенческих показателей исследовали двигательную активность (метод «открытое поле») и изменение работоспособности (метод «подвисание»).

На 17-ые сутки была отобрана кровь у 6-ти животных в каждой из 3-х групп, выделены печень и почки для определения содержания свинца атомноэмиссионным спектральным методом.

Полученные данные обрабатывались статистически с помощью t-критерий Стъюдента, регрессионного анализа, непараметрических критериев Манна-Уитни и Крускала-Уоллиса (Гланц, 1999).

Глава 3. Сорбция свинца и кадмия в условиях in vitro

3.1. Определение свинца с использованием ион селективных электродов

На модельных растворах было проведено определение свинца методами ограничивающих растворов, стандартных и двойных стандартных добавок. Затем было определено содержание свинца в фильтратах, оставшихся после отделения твердого остатка БАД «Биофит».

Было показано, что результаты по определению содержания Pb^{2+} и Cd^{2+} с использованием спектрального и аналитического методов частично согласуются между собой. Однако сложный состав БАД из растительного сырья делает аналитический метод очень трудоемким. Поэтому для дальнейшего исследования закономерностей сорбции Pb^{2+} и Cd^{2+} был выбран ГОСТированный метод спектрального анализа.

3.2. Сорбиня свинца и кадмия крупнодисперсными БАД

Результаты определения сорбционной способности крупнодисперсных БАД представлены в табл. 1.

Таблица 1

Сорбционная способность (ω±σ) крупнодисперсных БАД

Массовая доля	катионов, мас.%
Pb ²⁺	Cd ²⁺
13±1	57±5
27±2	29±3
40±4	71±7
52±5	66±5
" 62±5	42±4
63±6	73±7
75±8	76±7
81±8	87±7
85±8	70±7
86±8	80±8
92±8	88±8
94±8	86±8
	Pb ²⁺ 13±1 27±2 40±4 52±5 62±5 63±6 75±8 81±8 85±8 86±8 92±8

Все исследованные БАД сорбировали Pb²⁺ и Cd²⁺ с различной эффективностью. Были построены ряды активности сорбентов (по убыванию).

Ряд активности БАД для Pb^{2+} : «Петрушка» ≥ «Сельдерей» ≥ «Тыква» ≥ «Черника» ≥ «Овес» ≥ «Малина» ≥ «Укроп» ≥ «Морковь» ≥ «Топинамбур» > «Арония» > «Свекла» > «Яблоко»; для Cd^{2+} : «Сельдерей» ≥ «Овес» ≥ «Петрушка» ≥ «Тыква» ≥ «Малина» ≥ «Укроп» ≥ «Арония» ≥ «Черника» ≥ «Топинамбур» ≥ «Яблоко» > «Морковь» > «Свекла».

С использованием 75 процентиля определены эффективные энтеросорбенты: Pb^{2+} : «Петрушка» \geq «Сельдерей» \geq «Тыква» \geq «Черника» \geq «Овес» \geq «Малина»; Cd^{2+} : «Сельдерей» \geq «Овес» \geq «Петрушка» \geq «Малина» \geq «Укроп» \geq «Черника».

Высокую сорбционную способность можно объяснить тем, что в состав БАД входят пищевые волокна, в том числе полисахариды. Обладая высокоразвитой поверхностью и оставаясь в ходе опыта практически непереработанными, полисахариды способны сорбировать значительное количество Pb^{2+} и Cd^{2+} . У каждой БАД после проведения опыта получается своя масса остатка. Как правило, большей доле сорбированного металла соответствовала значительная масса сухого остатка, например, у «Овса», «Сельдерея» и «Петрушки» (табл.2).

Таблица 2 Масса остатка после обработки БАД кислотой (HCl) и основанием (NH4OH)

Наименование БАД	Овес	Сельдерей	Петрушка	Малина	Черника	Тыква	Топи намбур
Усредненная исходная масса, г	1.80	1.80	1.80	1.80	1.80	1.80	1.80
Усредненная масса сухого остатка, г	1.56	1.12	1.11	0.89	0.85	0.64	0.38

Эффективность сорбента характеризуется также его сорбционной емкостью (СЕ). На рис. 1 представлены графики зависимости сорбционной емкости БАД от

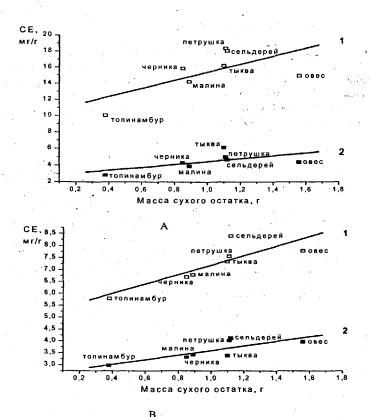


Рис.1. Изменение сорбционной емкости (СЕ) крупнодисперсных БАД для Pb^{2+} (A) и Cd^{2+} (B) в зависимости от массы сухого остатка: Масса введенной в раствор соли, мг: 1-30: 2-15. массы сухого остатка.

Уравнения регрессионной зависимости сорбционной емкости БАД от массы сухого остатка: для \mathbf{Pb}^{2+} 1. $\mathbf{y}=10.37+5.0\mathbf{x}, R^2=0.41, p=0.12$ 2. $\mathbf{y}=2.72+1.73\mathbf{x}, R^2=0.37, p=0.14$ для \mathbf{Cd}^{2+} 1. $\mathbf{y}=5.22+1.97\mathbf{x}, R^2=0.69, p=0.02$

2. y = 2.63 + 0.96x, $R^2 = 0.64$, p = 0.03,

где х – масса сухого остатка (г), у – сорбционная емкость (мг/г)

Коэффициент детерминации (R^2) служил основанием для прогноза величины сорбционной емкости по уравнениям регрессии. Только для Cd^{2+} линейная зависимость сорбционной емкости БАД от массы сухого остатка является значимой. Можно предположить, что увеличение массы сорбента приведет к увеличению количества связываемого кадмия.

3.3. Влияние степени дисперсности БАД на их сорбционную способность

В данном разделе представлены результаты изучения влияния степени дисперсности на сорбцию Pb^{2+} и Cd^{2+} . Предварительно был определен размер частиц ряда БАД «Биофит» различной степени дисперсности. В качестве примера на рис. 2 представлены микрофотографии, на рис. 3 - гистограммы крупно- и мелкодисперсных образцов БАД «Клюква».

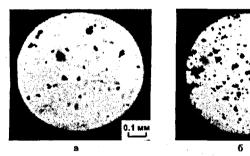


Рис. 2 Микрофотографии крупно- (а) и мелкодисперсных (б) образцов БАД «Клюква»

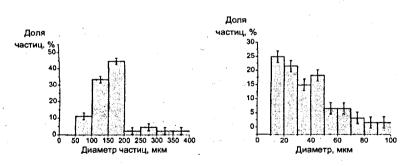


Рис. 3 Гистограммы распределения числа частиц по размерам в крупно-(а) и мелкодисперсных (б) образцах БАД «Клюква».

Крупнодисперсный образец «Клюква» содержит 70% частиц с диаметром 100 – 200 мкм, а мелкодисперсный 50% частиц диаметра 10 - 40 мкм.

Результаты исследования способности некоторых мелкодисперсных БАД сорбировать Pb^{2+} и Cd^{2+} изолированно и совместно представлены в табл. 3, 5.

Сравнение сорбционной способности БАД различной степени дисперсности для изолированной и совместной сорбции ${\bf Pb}^{2+}$ и ${\bf Cd}^2$

	Сорбционная способность БАД, мас.%							
Наименование	Из	олировані	ная сорбц	ия	Совместная сорбция мелкодисперсные			
БАД	крупнод	исперсные	мелкодис	персные				
	Pb ²⁺	Cd ²⁺	Pb ²⁺	Cd ²⁺	Pb ²⁺	Cd ²⁺		
«Арония»	40±4	71±7	84±7**	77±6	87±8	45±3*		
«Топинамбур»	52±5	66±5	70±5	68±6	80±8	17±1*		
«Свекла»	27±2	29±3	51±4**	22±2	43±4	32±2*		
«Яблоко»	13±1	57±5	34±2**	58±5	58±4*	19±1*		

* Статистически значимые различия совместной сорбции по сравнению с изолированной (р ≤ 0.05)

Сравнение полученных результатов сорбции для крупно- и мелкодисперсных БАД показывают, что увеличение их степени дисперсности существенно влияет на способность БАД сорбировать Pb^{2+} . Она значимо увеличивается в 1.5-2 раза. Способность сорбировать Cd^{2+} независимо от степени дисперсности остается неизменной. По-видимому, Cd^{2+} проникает в сорбент и занимает все доступные ему активные центры в твердых остатках независимо от их дисперсности, тогда как для Pb^{2+} в крупнодисперсных БАД не все активные центры доступны. При увеличении степени дисперсности доступность активных центров для Pb^{2+} возрастает. При совместной сорбции Pb^{2+} и Cd^{2+} выявлено антагонистическое влияние металлов. У «Аронии», «Яблока», «Топинамбура» значимо снижается сорбция Cd^{2+} по сравнению с изолированной сорбцией. Сорбционная способность для Pb^{2+} остается неизменной. Для «Яблока» при совместной сорбции значимо увеличивается сорбция Pb^{2+} . Такое неоднозначное взаимное влияние металлов объясняется, по-видимому, сложным многокомпонентным составом БАД.

3.4. Сорбция свинца и кадмия смесевыми БАД и их компонентами

Мелкодисперсные многокомпонентные смесевые БАД представляют собой смеси из фруктово-ягодных порошков, мяты, предназначенных для приготовления напитков. Была изучена способность сорбировать Pb^{2+} и Cd^{2+} изолированно и совместно двумя мелкодисперсными смесевыми БАД «Сонет» и «Калейдоскоп», БАД «Витасорб» стандартной дисперсности, а также их компонентами. Состав смесевых БАД представлен в табл. 4.

^{**} Статистически значимые различия мелкоднеперсных БАД по сравневию с крупноднеперсными БАД (p ≤ 0.05)

Таблица 4 Качественный и количественный состав смесевых БАЛ

Наименование смесевой БАД	Компоненты смесевой БАД	Содержание, мас. %
	«Клюква»	40
«Сонет»	«Черная смородина»	40
	«Черника»	20
4.	«Черная смородина»	48.5
«Калейдоскоп»	«Брусника»	32.0
«Калеидоскоп»	«Малина»	12.5
	«Мята»	7.0
	«Петрушка»	33.8
«Витасорб»	«Сельдерей»	32.4
· · · · · · · · · · · · · · · · · · ·	«Овес»	33.8

В качестве примера в табл. 5 представлены усредненные данные по способности смесевых БАД «Сонет» и «Калейдоскоп», а также их составных частей сорбировать Pb^{2+} и Cd^{2+} изолированно и совместно.

Таблица Сравнение сорбционной способности Pb²⁺ и Cd²⁺ смесевыми БАД и их компонентами

Металл,	Металл, Сорбционная способность БАД, мас. %							
мас.%		олирован			Совместная сорбция			
	P	b ²⁺	C	Cd ²⁺		Pb ²⁺		d ²⁺
БАД	Компо- ненты	Смесевая БАД	Компо- ненты	Смесевая БАД	Компо- ненты	Смесевая БАД	Компо- ненты	Смесевая БАД
	«COHET»							
«Клюква»	33±3		52±5		42±4		12±2*	
«Чер.смородина»	62±3	63±5	58±5	33±2**	81±8	80±7	24±2*	19±2*
«Черника»	70±5		76±6]	91±9	<u> </u>	24±2*	
			«КАЛЕЙ	доског	I»			
«Чер.смородина»	62±3		58±5		81±8		24±2*	
«Брусника»	37±3	66±5	22±2	22±1**	54±5	7616	14±1*	29±2
«Малина»	62±5	0013	66±5	2211	72±7	76±6	20±2*	2912
«Мята»	88±4]	78±6	1	90±8] .	46±3*	

^{*} Статистически значимые различия по сравнению с изолированной сорбцией (p ≤ 0.05)

Анализ состава смесевых БАД «Сонет» и «Калейдоскоп» (табл. 4) и сорбционной способности их компонентов (табл. 5) показывает, что сорбционная способность смесей по отношению Pb²⁺ равна среднему значению сорбционной способности компонентов смеси и определяется наиболее эффективным компонентом с наибольшим массовым содержанием в смеси. По отношению к Cd²⁺ компоненты смеси проявляют антагонистическое взаимодействие, сорбция смесей резко снижается по сравнению с изолированной сорбцией. При совместной

^{**} Статистически значимые различия компонентов смесей по сравнению со смесевыми БАД ($p \le 0.05$)

сорбции наблюдается тенденция к увеличению сорбционной способности как у компонентов, так и у смесей, для ${\rm Pb}^{2+}$, а сорбционная способность для ${\rm Cd}^{2+}$ снижается значимо у всех компонентов и смеси «Сонет», а у «Калейдоскопа» остается неизменной. Следовательно, имеет место антагонистическое влияние металлов при изолированной и совместной сорбции.

Так как компоненты входят в состав смесей в различных количествах, нами были проведены дополнительные эксперименты по изучению влияния массы сорбента на его сорбционную способность на примере мелкодисперсной «Черной смородины» (табл. 6).

Таблица б Влияние массы мелкодисперсной БАД на ее сорбционную способность

Соль	Масса вводимого	Macca	Масса сухого	Масса металла	G 07	
Соль	металла, мг	сорбента, г	остатка, г	в сухом остатке, мг	ω, мас.%	
Pb(NO ₃) ₂	15.1**	1.8014	0.84	5.80	61.4	
1 0(1403)2	16.2*	1.8015	0.86	6.70	66.1	
CdSO ₄	15.9**	1.8056	0.69	4.75	55.4	
Cu3O4	16.0*	1.8042	0.65	5.00	57.9	
	18.6**	0.7503	0.34	8.40	45.1	
DL(NO.)	18.9*	0.7508	0.34	11.2	59.3	
Pb(NO ₃) ₂	19.3**	0.3507	0.15	7.90	40.9	
	18.6*	0.3502	0.15	8.20	44.0	
	13.2**	0.7006	0.23	8.50	64.4	
0.00	13.5*	0.7007	0.23	7.40	54.8	
CdSO ₄	12.9**	0.3524	0.11	6.40	49.6	
	12.8*	0.3524	0.11	6.20	48.4	

Примечание: способ отделения твердого остатка: * - фильтрование под вакуумом ** - центрифугирование

Сравнение данных, полученных в эксперименте с различными массами БАД, показывает, что уменьшение массы сорбента в 5 раз приводит к снижению сорбционной способности Pb^{2+} на 20%, а Cd^{2+} на 10%. При этом в процентном отношении масса сухого остатка от массы взятого сорбента не изменяется.

БАД «Витасорб», специально составленная из компонентов с высокой сорбционной способностью как для Pb^{2+} , так и Cd^{2+} , сохраняет их высокую сорбционную способность в смесях. Как и у других БАД, при совместной сорбции металлов сорбция Pb^{2+} увеличивается, а Cd^{2+} уменьшается. Полученные результаты были использованы для разработки и наладки промышленного выпуска БАД «Витасорб», у которой функция сорбента является основной.

3.5. Сорбция свинца и кадмия полисахаридами, входящими в состав БАД

Чтобы выяснить, какие компоненты БАД определяют наибольшую эффективность энтеросорбентов, нами была изучена сорбция Pb^{2+} и Cd^{2+}

древесной аморфной целлюлозой, картофельным крахмалом, яблочным пектином и инулином из корней цикория (табл.7). Мы попытались сопоставить сорбционную способность некоторых полисахаридов и БАД «Биофит», в которых они содержатся.

Таблица 7 Сорбция свинца и кадмия полисахаридами, входящими в состав БАД

Наименование	Сорбция Pb2+,	Сорбция		орбция, мас.%
сорбента	мас.%	Cd2+, Mac.%	Pb ²⁺	Cd ²⁺
целлюлоза	89±1	96±7 ¹ 96±4 ² 68±3 ³ 47±4 ⁴	91±1	97±1
Укроп	63±6	73±5		
Петрушка	94±8	86±8		
Сельдерей	92±8	88±7		
ПЕКТИН	84±4	76±8	86±9	55±5
Яблоко	34±1	58±5	58±6	19±1
Арония	84±8	77±5	87±7	·* 45±3*
Тыква	86±8	80±8		
КРАХМАЛ	30±3	49±6	54±5*	18±2*
Овес	81±7	87±8		
Свекла	51±4	22±2	43±4	32±2*
Яблоко	34±1	58±5	58±6*	19±1*
ИНУЛИН	21±2	45±5	67±4*	15±1*
Топинамбур	70±5	68±6	80±8	17±1*

Примечание: 1,23,4 – значения, соответствующие массам вводимой соли: 15, 20, 30, 40 (мг)

Ряд активности сорбционной способности полисахаридов одинаков для Pb²⁺ и Cd²⁺ и выглядит следующим образом: целлюлоза > пектин > крахмал > инулин. Сорбционная способность целлюлозы и пектина не различается при изолированной и совместной сорбции. У крахмала и инулина при совместной сорбции значимо увеличивается сорбционная способность для Pb²⁺, а для Cd²⁺, как и у большинства БАД, значимо уменьшается. Сорбционная эффективность БАД может быть объяснена содержанием в ней значительного количества определенного полисахарида. Например, сорбирующим началом «Аронии» и «Тыквы» по отношению к Pb²⁺ и Cd²⁺ является пектин, «Яблока» – крахмал. Несоответствие значений сорбционной способности «Топинамбура» и содержащего им инулина можно объяснить высоким содержанием в топинамбуре других пищевых волокон, например, пектина и клетчатки.

Company of the second of the s

^{*} Стагистически значимые различия по сравнению с изолированной сорбцией (р ≤ 0.05)

Глава 4. Влияние БАД «Овес» на физиологические показатели и содержание свинца в органах и тканях экспериментальных животных

Результаты исследований динамики гематологических показателей экспериментальных животных, подвергшихся воздействию «малых» доз свинца, представлены в табл. 8.

Таблица 8 Линамика гематологических показателей белых крыс

Annamika resiaronorn reeking nokasarenen oendig kepite							
Варианты	Лейкоциты 10 ⁹ /л						
опытов	2-ыс сутки	8-ые сутки	14-ые сутки	17-ые сутки			
Группа I	10.60±1.27	14.20±0.85	10.60±1.11	8.80±1.11			
Группа II	15.20±9.94*	11.80±1.19	8.30±0.87	8.40±0.60			
Группа	12.70±8.09	11.00±0.72	10.40±1.21	9.20±0.53			
		Гемогл	обин г/л				
Группа I	114.30±2.45	116.70±2.41	107.00±3.94	89.36±6.27			
Группа II	109.60±3.47	101.30±1.72*	106.00±5.76	105.90±5.74			
Группа 🛛	110.50±3.44	110.80±3.69	100.00±1.13	85.18±4.94			
		Эритроц	иты 10 ¹² /л				
Группа I	7.726±0.112	6.884±0.186	5.277±0.129	4.331±0.209			
Группа II	7.408±0.097	6.457±0.100	5.358±0.313	5.555±0.312*			
Группа 🚺	7.312±0.138	6.321±0.120	5.187±0.304	5.137±0.297			
	Цветовой показатель						
Группа I	0.74±0.01	0.85±0.01	1.01±0.01	1.03±0.01			
Группа II	0.74±0.01	0.79±0.01	1.01±0.03	0.96±0.01			
Группа	0.76±0.01	0.88±0.01	0.98±0.02	0.83±0.01*			

^{*} Статистически значимые различия по сравнению с контролем (р ≤ 0.05)

Исследование количества лейкоцитов выявило у группы II значимое увеличение числа лейкоцитарных клеток на вторые сутки, значимое снижение гемоглобина на восьмые сутки и значимое повышение содержания эритроцитов на 17 сутки. У группы III таких отличий не наблюдается, следовательно, сорбент оказывает выраженное биопрофилактическое действие на гематологические показатели организма, подвергшегося воздействию свинца.

Результаты исследования динамики морфофизиологических и поведенческих исследований представлены в табл. 9.

Физиологические и поведенческие показатели подопытных животных

Варианты	Вес животных, г					
онытов	5-ые сутки	9-ые сутки	13-ые сутки	16-ые сутки		
Группа I	205±10.28	202±7.56	216±8.87	225±9.83		
Группа И	180±9.52	204±7.54	233±6.47	240±6.59		
Группа III	176±4.98	195±7.5	212±8.32	219±8.33		
	, :	Частота ды	кания (в 1 мин	.)		
Группа I	136±3.98	136±1.08	142±7.8	140±2.5		
Группа II	126±0.72	134±0.94	136±3.76	164±7.76*		
Группа III	108±6.94	132±2.94	146±3.8	138±8.34		
	Температура, °С					
Группа І	34.70±0.31	34.50±0.54	36.10±0.23	36.70±0.25		
Группа II	35.50±0.36	34.90±0.47	36.70±0.31	36.00±0.26*		
Группа III	36.10±0.49*	33.50±0.28	35.60±0.46	36.60±0.32		
	7	Гест «открыто	е поле» (сумм.)	, OE		
Группа I	53.00±8.49	40.00±7.83	26.00±4.71	34.00±7.51		
Группа II	43.00±8.39	41.00±7.56	34.00±11.31	27.00±4.50		
Группа III	43.50±6.99	36.00±7.51	47.00±10.18	20.00±3.39		
	Тест «подвисание», сек.					
Группа I	22.30±3.36	10.00±1.63	10.00±1.92	9.00±1.57		
Группа II	23.40±5.04	8.00±1.44	7.00±1.85	10.00±2.26		
Группа III	15.00±6.64*	8.00±1.75	10.00±1.64	12.00±2.61		

ОЕ - число пересечений сторон квадрата в единицу времени

* статистически значимые различия по сравнению с контролем (р ≤ 0.05)

В результате спектрального анализа установлены количества свинца в изучаемом биологическом субстрате (табл.10). Изучение литературных данных показывает, что содержание свинца в крови, печени и почках у контрольной группы находится в пределах фоновых концентраций (Скальный, 1997).

Таблица 10 Содержание свинца во внутренних органах и тканях подопытных животных

Варианты	Содержание свинца в изученных органах и ткани					
опытов	Кровь, мг/л	Печень, мг/кг	Почки, мг/кг			
Группа I	0.30±0.036	0.500±0.036	0.37±0.03			
Группа II	3.26±0.29*·**	4.65±0.26****	37.67±2.29* **			
Группа III	1.53±0.09* **	2.20±0.15****	17.83±1.14****			

* статистически значимые различия по сравнению с контролем (критерий Манна – Уитни р ≤0.05),

** между группами (критерий Крускала-Уолисса, p ≤ 0.05)

Полученные значения критериев Крускала-Уоллиса и Манна-Уитни показали, что имеет место значимое различие содержания свинца во всех трех группах животных по изученным органам и крови. Причем у животных, получавших БАД

«Овес», содержание свинца в крови, печени и почках в 2–2.5 раза меньше, чем у животных со стандартным рационом. Таким образом, применение данного энтеросорбента дает выраженный профилактический эффект.

Обращает на себя внимание тот факт, что содержание свинца в почках животных из групп II и III в 8–11 раз больше, чем в крови и печени (табл. 10). Это может свидетельствовать о том, что свинец накапливается в почках.

Таким образом, БАД «Овес» можно рекомендовать в качестве перспективного энтеросорбента по отношению к соединениям свинца, а также предположить его высокое сорбирующее действие по отношению к кадмию.

ЗАКЛЮЧЕНИЕ

Повышенное внимание к негативному влиянию свинца на человека в настоящее время обусловлено тем, что из узкого раздела профессиональной патологии и медицины труда вопрос отравления свинцом перерос в глобальную экопатологическую проблему. Существует большое количество научных работ, посвященных изучению обнаружения, накопления и оценке нагрузки тяжелых металлов на организм человска (Ревич 1990, 2001, Скальный, 1997, Розанов, 1999, Venugopal, 1978, Graciano, 1993), а также разработке комплексов лечебнопрофилактических мероприятий, направленных на снижение свинцовой и кадмиевой интоксикации и их последствий (Трахтенберг, 1996, Кациельсон и др., 2004). Известны энтеросорбенты на основе целлюлозы, хитозана, минеральных веществ, которые эффективно производят детоксикацию при воздействии на организм тяжелых металлов. Но в настоящее время также необходимы сорбенты с «мягким» действием для регулярного и длительного профилактического применения. Было сделано предположение, что растительные БАД являются эффективными энтеросорбентами свинца и кадмия и играют существенную роль в биопрофилактике загрязнения среды обигания человека тяжелыми металлами. Нами была подобрана методика изучения сорбционной способности Pb2+ и Cd2+ криопорошками «Биофит» из растительного сырья разной степени дисперсности и пищевыми волокнами, входящими в их состав, в опытах in vitro. Полученные в ходе исследования результаты показывают, что найдена новая группа энтеросорбентов из растительного сырья, способная с разной эффективностью сорбировать катионы свинца и кадмия. Разработанная технология переработки исходного сырья позволяет практически полностью сохранить весь комплекс биологически активных веществ, необходимых для лечебно-профилактического питания детей и взрослых. БАД «Биофит» не только эффективно сорбируют свинец и кадмий, но и поставляют в организм витамины и микроэлементы, способные оказывать антагонистическое действие на тяжелые металлы и повышать неспецифическую резистентность организма.

Изучение влияния степени дисперсности БАД на их сорбционную способность позволило выявить зависимость эффективности сорбции Pb^{2+} от размеров частиц. Показано, что уменьшение размеров частиц БАД приводит к

повышению сорбционной способности. Это дало возможность создать не только таблетированные БАД, но и растворимые напитки и соки на основе криопорошков сверхтонкого измельчения. Интересные результаты получены при изучении совместной сорбции Pb^{2+} и Cd^2 . Было показано антагонистическое влияние металлов, при котором сорбция Pb^{2+} оставалась неизменной, а сорбция Cd^{2+} значимо снижалась.

В результате экспериментов *in vitro* была выбрана БАД «Овсс» с высокой сорбционной способностью, введение которой в рацион питания белых крыс привело к значительному (в 1.5-2 раза) снижению концентрации свинца в крови и внутренних органах по сравнению с животными, получавшими зерновой овес.

Целесообразно использование методики для определения сорбционной способности растительных сорбентов и составления смесевых продуктов, способных с высокой эффективностью сорбировать и выводить из организма свинец и кадмий.

выводы

- 1. С помощью разработанной методики количественной оценки сорбционной способности БАД построены ряды активности сорбентов (по убыванию) и установлены эффективные энтеросорбенты: ∂ ля Pb^{2+} : «Петрушка» \geq «Сельдерей» \geq «Тыква» \geq «Черника» \geq «Овес» \geq «Малина»; ∂ ля Cd^{2+} : «Сельдерей» \geq «Овес» \geq «Пструшка» \geq «Малина» \geq «Укроп» \geq «Черника». Установлена линейная зависимость сорбционной емкости БАД для Cd^{2+} от массы сухого остатка.
- 2. Установлено, что диаметр частиц крупнодисперсных БАД составил 100–500 мкм, мелкодисперсных 5-40 мкм. Сорбционная способность для Pb^{2+} значимо увеличивается в 1.5-2 раза, а для Cd^{2+} остается неизменной. При совместной сорбции сорбционная способность для Pb^{2+} не меняется, а для Cd^{2+} значимо снижается.
- 3. Установлено, что сорбщонная способность по отношению к Pb²⁺ смесями «Сонет» и «Калейдоскоп» определяется сорбщонной способностью и массовой долей наиболее эффективного компонента. По отношению к Cd²⁺ сорбщонная способность смесей значимо ниже сорбщонной способности компонентов смеси, проявляющих антагонистическое взаимное влияние. При совместной сорбщии у смесей и их компонентов незначимо увеличивается сорбщонная способность для Pb²⁺ и значимо снижается для к Cd²⁺.
- 4. Установлена сорбционная способность пищевых волокон по отношению к Pb² и Cd²⁺. Ряд активности одинаков для обоих катионов: целлюлоза > пектин > крахмал > инулин. Сорбционная способность «Свеклы» и «Яблока» определяется высоким содержанием крахмала в их составе, «Аронии» пектином, а «Тыквы» пектином и целлюлозой.

1.00.

- 5. В днапазоне доз нитрата свинца выявлено влияние токсиканта на морфофизиологические (динамика частоты дыхания, ректальной температуры) и гематологические (динамика количества эритроцитов, лейкоцитов, содержания гемоглобина) показатели экспериментальных животных, а в комбинации свинца с БАД «Овес» показана биопротекторная роль энтеросорбента.
- 6. Введение сорбента (БАД «Овес») в рацион питания перед поступлением свинца приводит к значительному снижению (в 1.5-2 раза) концентрации токсиканта в крови и внутренних органах экспериментальных животных.

Список работ, опубликованных по теме диссертации

- 1. Степанова, Е.А. Изучение способности ряда продуктов из растительного сырья сорбировать и выводить из организма человека кадмий / Е.А. Степанова, В.Ф. Урьяш // II Конференция молодых Ученых-химиков: Матер. конф. Н. Новгород, 1999. С. 91.
- 2. Урьяш, В.Ф. Изучение термохимическим методом процесса переваривания продуктов «Биофит» / В.Ф. Урьяш, А.Е. Груздева, Н.В. Новоселова, Н.Б. Плетнева, Е.В. Потёмкина, Е.А. Степанова // Пища. Экология. Человек: Матер. Межд. конф. М., 1999. Т.1. С. 64.
- 3. Степанова, Е.А. Различные мстоды исследования способности пищевых добавок «Биофит» сорбировать тяжелые металлы / Степанова Е.А., Гришатова Н.В., Урьяш В.Ф., Кулешова Н.В., Безруков М.Е. // Современные проблемы естествознания: Матер. Межд. конф. Владимир, 2001. С. 197-200.
- 4. Степанова, Е.А. Изучение токсичности водных растворов после удаления из них свинца и кадмия некоторыми продуктами «Биофит» / Е.А. Степанова, В.В. Клепцова, О.П. Мякова, В.Ф. Урьяш // Молодая наука XXI веку: Матер. Межд. конф. Иваново, 2001. Ч.V. С. 90-91.
- 5. Степанова, Е.А. Аналитические методы определения свинца и кадмия в водных растворах после сорбции их энтеросорбентами из растительного сырья / Е.А. Степанова, Н.А. Скачкова, Н.В. Коренова, Н.В. Кулешова, В.Ф. Урьяш // IV Конференция молодых Ученых-химиков: матер. конф. Н. Новгород, 2001. С. 41-42.
- 6. Степанова, Е.А. Изучение совместной сорбции свинца и кадмия некоторыми пищевыми добавками / Е.А. Степанова, Н.В. Гришатова, А.Е. Груздева, В.Т. Демарин, В.Ф. Урьяш // Проблемы регионального экологического мониторинга: Матер. конф. Н.Новгород, 2002. С. 140-141.
- 7. Степанова, Е.А. Влияние степени дисперсности криопорошков «Биофит» на их способность сорбировать тяжелые металлы / Е.А. Степанова, В.Ф. Урьяш, Н.В. Гришатова, А.Е. Груздева, В.Т. Демарин // Конгроль и реабилитация окружающей среды: Матер. Межд. симп. Томск, 2002. C.155.
- 8. Урьяш, В.Ф. Криопорошки «Биофит» эффективные энтеросорбенты тяжелых металлов / В.Ф. Урьяш, Е.А. Степанова, А.Е. Груздева, Н.В. Гришатова, В.Т. Демарин, А.Н. Туманова // Тенденции. Теории и практика («ТРАНСТЕХ 2002»): Матер. Межд. конф. по трансферу технологий в свободных экономических зонах. Гомель, 2002. Ч.1. С.229-233.

- 9. Урьяш, В.Ф. Изучение процесса сорбции свинца и кадмия некоторыми полисахаридами / В.Ф. Урьяш, Н.В. Гришатова, А.Е. Груздева, Е.А. Степанова // VIII Нижегородская сессия молодых ученых: Матер. докл. Н.Новгород, 2003. С. 247-248.
- 10. Урьяш, В.Ф. Физико-химические свойства инулина полисахарида, содержащегося в топинамбуре / В.Ф. Урьяш, А.Е. Груздева, Н.В. Гришатова, Н.Ю. Кокурина, Л.А. Фаминская, В.Н. Ларина, Е.А. Степанова // Нетрадиционные природные ресурсы, инновационные технологии и продукты: Сб. научн. тр. М., 2003. Вып. 9. С. 182-188.
- 11. Урьяш, В.Ф. Изучение совместной сорбции свинца и кадмия мелкодисперсными криопорошками «Биофит» / В.Ф. Урьяш, Е.А. Степанова, Н.В. Гришатова, А.Е. Груздева, В.Т. Демарин, А.Н. Туманова // Аналитика и аналитики: Матер. Межд. Фор. Воронеж, 2003. Т.1. С. 129.
- 12. Степанова, Е.А., Изучение способности криопорошка «Овсс-Биофит» сорбировать свинец в условиях *in vivo* / Е.А. Степанова, А.А. Силкин, В.В. Логинов, В.Ф. Урьяш, Н.В. Гришатова, А.Е. Груздева, А.Н. Туманова // Питание и здоровье проблемы и пути решения: Матер. конф. Н. Новгород, 2004. С. 20-22.
- 13. Урьяш, В.Ф. Особенности влияния нитрата свинца на организм крыс при совместном поступлении с энтеросорбентом / В.Ф. Урьяш, Н.В. Гришатова, А.Е. Груздева, А.А. Силкин, В.В. Логинов, Е.А. Степанова // ІХ Нижегородская сессия молодых ученых: Матер. докл. Н.Новгород, 2004. С. 105-106.
- 14. Урьяш, В.Ф. Продукты «Биофит» эффективные энтеросорбенты свинца и кадмия / В.Ф. Урьяш, А.Е. Груздева, Н.В. Гришатова, Е.А. Степанова, В.Т. Демарин, А.Н. Туманова // Питание и здоровье проблемы и пути решения: Матер. конф. Н. Новгород, 2004. С.17-20.
- 15. Урьяш, В.Ф. Исследование процесса сорбции тяжелых металлов пищевыми добавками «Биофит» / В.Ф. Урьяш, Е.А. Степанова, Н.В. Гришатова, А.Е. Груздева, Н.В. Кулешова, М.Е. Безруков // Вестник Нижегородского ун-та им. Н.И. Лобачевского. Н. Новгород, 2004. Серия биология, №3(5). С. 85-91.
- 16.Степанова, Е.А. Изучение сорбционных свойств биологически активных добавок к пище для профилактики негативного воздействия свинца на организм человека / Степанова Е.А. // Популяция в пространстве и времени. Матер. докл. VIII Всеросс. популяционного семинара. Н. Новгород, 2005. С. 397-399.
- 17. Степанова, Е.А. Исследование сорбции и выведения свинца биологически активными добавками к пище в опытах in vitro и in vivo / Е.А. Степанова, В.Ф. Урьяш, А.А. Силкин, В.В. Логинов, А.Е. Груздева, Н.В. Грищатова, А.Н. Туманова // Поволжский экологический журнал. 2005. №1. С.71-75.
- 18. Урьяш, В.Ф. Сорбция свинца и кадмия продуктом «Биофит» из скорлупы куриных яиц, и способности этого продукта поставлять кальций в организм человека / В.Ф. Урьяш, А.Е. Груздева, Н.В. Гришатова, В.Т. Демарин, А.Н. Туманова, В.Ф. Занозина, Е.А. Степанова // Поволжский экологический журнал. 2005. № 2. С.167-172.

Подписано в печать 28.07.06. Формат 60 x 84 1 /16. Бумага офсетная. Печать офсетная. Уч.-изд. л. 1,0. Тираж 100 экз. Заказ 610.

Нижегородский государственный технический университет. Типография НГТУ. 603950, Нижний Новгород, ул. Минина, 24.

